CHAPTER VI. DIFFICULTIES OF THE THEORY.
2. ON THE ABSENCE OR RARITY OF TRANSITIONAL VARIETIES. (continued)
As allied or representative species, when inhabiting a continuous area, are
generally distributed in such a manner that each has a wide range, with a
comparatively narrow neutral territory between them, in which they become
rather suddenly rarer and rarer; then, as varieties do not essentially
differ from species, the same rule will probably apply to both; and if we
take a varying species inhabiting a very large area, we shall have to adapt
two varieties to two large areas, and a third variety to a narrow
intermediate zone. The intermediate variety, consequently, will exist in
lesser numbers from inhabiting a narrow and lesser area; and practically,
as far as I can make out, this rule holds good with varieties in a state of
nature. I have met with striking instances of the rule in the case of
varieties intermediate between well-marked varieties in the genus Balanus.
And it would appear from information given me by Mr. Watson, Dr. Asa Gray,
and Mr. Wollaston, that generally, when varieties intermediate between two
other forms occur, they are much rarer numerically than the forms which
they connect. Now, if we may trust these facts and inferences, and
conclude that varieties linking two other varieties together generally have
existed in lesser numbers than the forms which they connect, then we can
understand why intermediate varieties should not endure for very long
periods: why, as a general rule, they should be exterminated and
disappear, sooner than the forms which they originally linked together.
For any form existing in lesser numbers would, as already remarked, run a
greater chance of being exterminated than one existing in large numbers;
and in this particular case the intermediate form would be eminently liable
to the inroads of closely allied forms existing on both sides of it. But
it is a far more important consideration, that during the process of
further modification, by which two varieties are supposed to be converted
and perfected into two distinct species, the two which exist in larger
numbers, from inhabiting larger areas, will have a great advantage over the
intermediate variety, which exists in smaller numbers in a narrow and
intermediate zone. For forms existing in larger numbers will have a better
chance, within any given period, of presenting further favourable
variations for natural selection to seize on, than will the rarer forms
which exist in lesser numbers. Hence, the more common forms, in the race
for life, will tend to beat and supplant the less common forms, for these
will be more slowly modified and improved. It is the same principle which,
as I believe, accounts for the common species in each country, as shown in
the second chapter, presenting on an average a greater number of
well-marked varieties than do the rarer species. I may illustrate what I
mean by supposing three varieties of sheep to be kept, one adapted to an
extensive mountainous region; a second to a comparatively narrow, hilly
tract; and a third to the wide plains at the base; and that the inhabitants
are all trying with equal steadiness and skill to improve their stocks by
selection; the chances in this case will be strongly in favour of the great
holders on the mountains or on the plains improving their breeds more
quickly than the small holders on the intermediate narrow, hilly tract; and
consequently the improved mountain or plain breed will soon take the place
of the less improved hill breed; and thus the two breeds, which originally
existed in greater numbers, will come into close contact with each other,
without the interposition of the supplanted, intermediate hill variety.
|