CHAPTER XIV. MUTUAL AFFINITIES OF ORGANIC BEINGS: MORPHOLOGY -- EMBRYOLOGY -- RUDIMENTARY ORGANS.
4. MORPHOLOGY. (continued)
How inexplicable are the cases of serial homologies on the ordinary view of
creation! Why should the brain be enclosed in a box composed of such
numerous and such extraordinarily shaped pieces of bone apparently
representing vertebrae? As Owen has remarked, the benefit derived from the
yielding of the separate pieces in the act of parturition by mammals, will
by no means explain the same construction in the skulls of birds and
reptiles. Why should similar bones have been created to form the wing and
the leg of a bat, used as they are for such totally different purposes,
namely flying and walking? Why should one crustacean, which has an
extremely complex mouth formed of many parts, consequently always have
fewer legs; or conversely, those with many legs have simpler mouths? Why
should the sepals, petals, stamens, and pistils, in each flower, though
fitted for such distinct purposes, be all constructed on the same pattern?
On the theory of natural selection, we can, to a certain extent, answer
these questions. We need not here consider how the bodies of some animals
first became divided into a series of segments, or how they became divided
into right and left sides, with corresponding organs, for such questions
are almost beyond investigation. It is, however, probable that some serial
structures are the result of cells multiplying by division, entailing the
multiplication of the parts developed from such cells. It must suffice for
our purpose to bear in mind that an indefinite repetition of the same part
or organ is the common characteristic, as Owen has remarked, of all low or
little specialised forms; therefore the unknown progenitor of the
Vertebrata probably possessed many vertebrae; the unknown progenitor of the
Articulata, many segments; and the unknown progenitor of flowering plants,
many leaves arranged in one or more spires. We have also formerly seen
that parts many times repeated are eminently liable to vary, not only in
number, but in form. Consequently such parts, being already present in
considerable numbers, and being highly variable, would naturally afford the
materials for adaptation to the most different purposes; yet they would
generally retain, through the force of inheritance, plain traces of their
original or fundamental resemblance. They would retain this resemblance
all the more, as the variations, which afforded the basis for their
subsequent modification through natural selection, would tend from the
first to be similar; the parts being at an early stage of growth alike, and
being subjected to nearly the same conditions. Such parts, whether more or
less modified, unless their common origin became wholly obscured, would be
serially homologous.
|