CHAPTER IX. HYBRIDISM.
3. LAWS GOVERNING THE STERILITY OF FIRST CROSSES AND OF HYBRIDS. (continued)
Now do these complex and singular rules indicate that species have been
endowed with sterility simply to prevent their becoming confounded in
nature? I think not. For why should the sterility be so extremely
different in degree, when various species are crossed, all of which we must
suppose it would be equally important to keep from blending together? Why
should the degree of sterility be innately variable in the individuals of
the same species? Why should some species cross with facility and yet
produce very sterile hybrids; and other species cross with extreme
difficulty, and yet produce fairly fertile hybrids? Why should there often
be so great a difference in the result of a reciprocal cross between the
same two species? Why, it may even be asked, has the production of hybrids
been permitted? To grant to species the special power of producing
hybrids, and then to stop their further propagation by different degrees of
sterility, not strictly related to the facility of the first union between
their parents, seems a strange arrangement.
The foregoing rules and facts, on the other hand, appear to me clearly to
indicate that the sterility, both of first crosses and of hybrids, is
simply incidental or dependent on unknown differences in their reproductive
systems; the differences being of so peculiar and limited a nature, that,
in reciprocal crosses between the same two species, the male sexual element
of the one will often freely act on the female sexual element of the other,
but not in a reversed direction. It will be advisable to explain a little
more fully, by an example, what I mean by sterility being incidental on
other differences, and not a specially endowed quality. As the capacity of
one plant to be grafted or budded on another is unimportant for their
welfare in a state of nature, I presume that no one will suppose that this
capacity is a SPECIALLY endowed quality, but will admit that it is
incidental on differences in the laws of growth of the two plants. We can
sometimes see the reason why one tree will not take on another from
differences in their rate of growth, in the hardness of their wood, in the
period of the flow or nature of their sap, etc.; but in a multitude of
cases we can assign no reason whatever. Great diversity in the size of two
plants, one being woody and the other herbaceous, one being evergreen and
the other deciduous, and adaptation to widely different climates, does not
always prevent the two grafting together. As in hybridisation, so with
grafting, the capacity is limited by systematic affinity, for no one has
been able to graft together trees belonging to quite distinct families;
and, on the other hand, closely allied species and varieties of the same
species, can usually, but not invariably, be grafted with ease. But this
capacity, as in hybridisation, is by no means absolutely governed by
systematic affinity. Although many distinct genera within the same family
have been grafted together, in other cases species of the same genus will
not take on each other. The pear can be grafted far more readily on the
quince, which is ranked as a distinct genus, than on the apple, which is a
member of the same genus. Even different varieties of the pear take with
different degrees of facility on the quince; so do different varieties of
the apricot and peach on certain varieties of the plum.
|